# МУНИЦИПАЛЬНОЕ КАЗЁННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «КРОПОТКИНСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА»

**PACCMOTPEHO** 

На МС МКОУ «Кропоткинская СОШ» Протокол № 6 От «01» июня 2022 г.

**УТВЕРЖДАЮ** 

директор МКОУ «Кропоткинская СОШ» В.В.Леонтьева приказ № 82-Д От «06» июня 2022 г.

## РАБОЧАЯ ПРОГРАММА

#### «RИМИХ»

# ДЛЯ ОБУЧАЮЩИХСЯ 11 КЛАССОВ





СОСТАВИЛА: С.В.Пенская Учитель химии

#### ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа учебного предмета «Химия» разработана на основе требований к планируемым результатам освоения основой образовательной программы МКОУ «Кропоткинская СОШ», реализующей ФГОС на уровне среднего общего образования, примерной программы основного общего образования по химии (базовый уровень) и авторской программы О.С. Габриеляна (Габриелян О.С. программа курса химии для 10-11 классов общеобразовательных учреждений М: Дрофа,2008г)..

## Исходными документами для составления примера рабочей программы явились:

- Федеральный закон №273 «Об образовании в Российской Федерации», принятый Государственной Думой 21 декабря 2012 года и одобренный Советом Федерации 26 декабря 2012 года.
- Приказ Минобрнауки от 17.05.2012 № 413 «Об утверждении и введении в действие ФГОС среднего( полного) общего образования»
- Приказ Минобрнауки России от 7 июня 2012 г. № 24480 «Об утверждении федерального государственного образовательного стандарта среднего (полного) общего образования»
- Письмо Министерства образования и науки РФ от 19 апреля 2011г. №03-255 «О введении федеральных государственных образовательных стандартов общего образования»
- Приказ Минобрнауки от 17.12. 2010г. № 1897 «Об утверждении и введении в действие ФГОС ООО»
- Федерального государственного образовательного стандарта основного общего образования (приказ Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897)

# Общая характеристика учебного предмета

Химия, как одна из основополагающих областей естествознания, является неотъемлемой частью образования школьников. Каждый человек живет в мире веществ, поэтому он должен иметь основы фундаментальных знаний по химии (химическая символика, химические понятия, факты, основные законы и теории), позволяющие выработать представления о составе веществ, их строении, превращениях, практическом использовании, а также об опасности, которую они могут представлять. Изучая химию, учащиеся узнают о материальном единстве всех веществ окружающего мира, обусловленности свойств веществ их составом и строением, познаваемости и предсказуемости химических явлений. Изучение свойств веществ и их превращений способствует развитию логического мышления, а практическая работа с веществами (лабораторные опыты) — трудолюбию, аккуратности и собранности. На примере химии учащиеся получают представления о методах познания, характерных для естественных наук (экспериментальном и теоретическом).

Преподавание курса химии в 11 классе тоже рассчитан в объеме 33 часа (1 часа в неделю).

Количество контрольных работ за год – 2

Количество практических работ за год – 2

Содержание программы направлено на освоение учащимися знаний, умений и навыков на базовом уровне.

# Цели изучения химии в 11 классе:

- освоение важнейших знаний об основных понятиях и законах химии, химической символике;
- овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;
- развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;
- воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;
- применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

#### Задачи:

- 1.Сформировать знание основных понятий и законов химии;
- 2. Воспитывать общечеловеческую культуру;
- 3. Учить наблюдать, применять полученные знания на практике.

**Личностными результатами** изучения предмета «Химия» в 10-11 классах являются следующие умений:

- осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;
- постепенно выстраивать собственное целостное мировоззрение: осознавать потребность и готовность к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы;
- оценивать жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья;
  - оценивать экологический риск взаимоотношений человека и природы.
- формировать экологическое мышление: умение оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды гаранта жизни и благополучия людей на Земле.

**Метапредметными** результатами изучения курса «Химия» является формирование универсальных учебных действий (УУД).

# Регулятивные УУД:

- самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности;
- выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели;
  - составлять (индивидуально или в группе) план решения проблемы;
- работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;
  - в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки. *Познавательные УУД:*
- анализировать, сравнивать, классифицировать и обобщать факты и явления. Выявлять причины и следствия простых явлений.
- осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
- строить логическое рассуждение, включающее установление причинно-следственных связей.
  - создавать схематические модели с выделением существенных характеристик объекта.
  - составлять тезисы, различные виды планов (простых, сложных и т.п.).
  - преобразовывать информацию из одного вида в другой (таблицу в текст и пр.).

• уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

# Коммуникативные УУД:

Самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т.д.).

# Предметными результатами изучения предмета являются следующие умения:

- осознание роли веществ:
- определять роль различных веществ в природе и технике;
- объяснять роль веществ в их круговороте.
- рассмотрение химических процессов:
- приводить примеры химических процессов в природе;
- находить черты, свидетельствующие об общих признаках химических процессов и их различиях.
  - использование химических знаний в быту:
  - объяснять значение веществ в жизни и хозяйстве человека.
  - объяснять мир с точки зрения химии:
  - перечислять отличительные свойства химических веществ;
  - различать основные химические процессы;
  - определять основные классы неорганических веществ;
  - понимать смысл химических терминов.
  - овладение основами методов познания, характерных для естественных наук:
- характеризовать методы химической науки (наблюдение, сравнение, эксперимент, измерение) и их роль в познании природы;
  - проводить химические опыты и эксперименты и объяснять их результаты.
- умение оценивать поведение человека с точки зрения химической безопасности по отношению к человеку и природе:
- использовать знания химии при соблюдении правил использования бытовых химических препаратов;
  - различать опасные и безопасные вещества.

Рабочая программа построена на основе концентрического подхода. Это достигается путем вычленения дидактической единицы — химического элемента - и дальнейшем усложнении и расширении ее: здесь таковыми выступают формы существования (свободные атомы, простые и сложные вещества). В программе учитывается реализация межпредметных связей с курсом физики (7 класс) и биологии (6-7 классы), где дается знакомство с строением атома, химической организацией клетки и процессами обмена веществ.

Основной формой организации учебного процесса является классно-урочная система. В качестве дополнительных форм организации образовательного процесса используется система консультационной поддержки, индивидуальных занятий, самостоятельная работа учащихся с использованием современных информационных технологий.

Преобладающей формой контроля выступают письменный (самостоятельные и контрольные работы) и устный опрос (собеседование).

## Содержание учебного курса «Химия 11 класс»

## Тема 1

#### Строение атома и периодический закон Д. И. Менделеева (3ч)

Основные сведения о строении атома. Ядро: протоны и нейтроны. Изотопы. Электроны. Электронная оболочка. Энергетический уровень. Особенности строения электронных оболочек атомов элементов 4-го и 5-го периодов периодической системы Д. И. Менделеева (переходных элементов). Понятие об орбиталях. *s*- ир-орбитали. Электронные конфигурации атомов химических элементов.

Периодический закон Д. И. Менделеева в свете учения о строении атома. Открытие Д. И. Менделеевым периодического закона.

Периодическая система химических элементов Д. И. Менделеева — графическое отображение периодического закона. Физический смысл порядкового номера элемента, номера периода и номера группы. Валентные электроны. Причины изменения свойств элементов в периодах и группах (главных подгруппах). Значение периодического закона и периодической системы химических элементов Д. И. Менделеева для развития науки и понимания химической картины мира.

Демонстрации. Различные формы периодической системы химических элементов Д. И. Менделеева.

#### Тема 2

## Строение вещества (14 ч)

*Ионная химическая связь*. Катионы и анионы. Классификация ионов. Ионные кристаллические решетки. Свойства веществ с этим типом кристаллических решеток.

Ковалентная химическая связь. Электроотрицательность. Полярная и неполярная ковалентные связи. Диполь. Полярность связи и полярность молекулы. Обменный и донорно-акцепторный механизмы образования ковалентной связи. Молекулярные и атомные кристаллические решетки. Свойства веществ с этими типами кристаллических решеток.

*Металлическая химическая связь*. Особенности строения атомов металлов. Металлическая химическая связь и металлическая кристаллическая решетка. Свойства веществ с этим типом связи.

*Водородная химическая связь*. Межмолекулярная и внутримолекулярная водородная связь. Значение водородной связи для организации структур биополимеров.

*Газообразное состояние, вещества.* Три агрегатных состояния воды. Особенности строения газов. Молярный объем газообразных веществ.

Примеры газообразных природных смесей: воздух, природный газ. Загрязнение атмосферы (кислотные дожди, парниковый эффект) и борьба с ним. Представители газообразных веществ: водород, кислород, углекислый газ, аммиак, этилен. Их получение, собирание и распознавание. Жидкое состояние вещества. Вода. Потребление воды в быту и на производстве. Жесткость воды и способы ее устранения. Минеральные воды, их использование в столовых и лечебных целях. Жидкие кристаллы и их применение.

*Твердое состояние вещества*. Аморфные твердые вещества в природе и в жизни человека, их значение и применение. Кристаллическое строение вещества.

Дисперсные системы. Понятие о дисперсных системах. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем в зависимости от агрегатного состояния дисперсной среды и дисперсионной фазы. Грубодисперсные системы: эмульсии, суспензии, аэрозоли.

Тонкодисперсные системы: гели и золи.

Состав вещества и смесей. Вещества молекулярного и немолекулярного строения. Закон постоянства состава веществ. Понятие «доля» и ее разновидности: массовая (доля элементов в соединении, доля компонента в смеси — доля примесей, доля растворенного вещества в растворе) и объемная.

**Демонстрации.** Модель кристаллической решетки хлорида натрия. Образцы минералов с ионной кристаллической решеткой: кальцита, галита. Модели кристаллических решеток «сухого льда» (или иода), алмаза, графита (или кварца). Модель молярного объема газов. Три агрегатных состояния воды. Образцы накипи в чайнике и трубах центрального отопления. Жесткость воды и способы ее устранения. Приборы на жидких кристаллах. Образцы различных дисперсных систем: эмульсий, суспензий, аэрозолей, гелей и золей. Коагуляция. Синерезис. Эффект Тиндаля.

# Лабораторные опыты

- 1.Получение, собирание и распознавание газов.
- 2. Испытание воды на жесткость. Устранение жесткости воды.
- 3. Ознакомление с минеральными водами.
- 4. Ознакомление с дисперсными системами.

#### Тема 3

# Химические реакции (8 ч)

Реакции, идущие без изменения состава веществ. Аллотропия и аллотропные видоизменения. Причины аллотропии на примере модификаций кислорода, углерода и фосфора. Озон, его биологическая роль. Изомеры и изомерия.

Реакции, идущие с изменением состава веществ. Реакции соединения, разложения, замещения и обмена в неорганической и органической химии. Реакции экзо- и эндотермические. Тепловой эффект химической реакции и термохимические уравнения. Реакции горения, как частный случай экзотермических реакций.

Скорость химической реакции. Скорость химической реакции. Зависимость скорости химической реакции от природы реагирующих веществ, концентрации, температуры, площади поверхности соприкосновения и катализатора. Реакции гомо- и гетерогенные. Понятие о катализе и катализаторах. Ферменты как биологические катализаторы, особенности их функционирования.

Обратимость химических реакций. Необратимые и обратимые химические реакции. Состояние химического равновесия для обратимых химических реакций. Способы смещения химического равновесия на примере синтеза аммиака. Понятие об основных научных принципах производства на примере синтеза аммиака или серной кислоты.

Истинные растворы. Растворимость и классификация веществ по этому признаку: растворимые, малорастворимые и нерастворимые вещества.

Гидролиз органических и неорганических соединений. Необратимый гидролиз. Обратимый гидролиз солей. Гидролиз органических соединений и его практическое значение для получения гидролизного спирта и мыла.

Окислительно-восстановительные реакции. Степень окисления. Определение степени окисления по формуле соединения. Понятие об окислительно-восстановительных реакциях. Окисление и восстановление, окислитель и восстановитель.

Электролиз. Электролиз как окислительно-восстановительный процесс. Электролиз расплавов и растворов на примере хлорида натрия. Практическое применение электролиза. Электролитическое получение алюминия.

Демонстрации. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми гранулами цинка и взаимодействия одинаковых кусочков разных металлов (магния, цинка, железа) с соляной кислотой. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. Примеры необратимых реакций, идущих с образованием осадка, газа или воды. Взаимодействие лития и натрия с водой. Образцы кристаллогидратов. Испытание растворов электролитов и неэлектролитов на предмет диссоциации. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления раствора. Гидролиз карбида кальция. Гидролиз карбонатов щелочных металлов и нитратов цинка или свинца (II). Получение мыла. Простейшие окислительно-восстановительные реакции: взаимодействие цинка с соляной кислотой и железа с раствором сульфата меди (II). Модель электролизера. Модель электролизной ванны для получения алюминия.

#### Лабораторные опыты.

- 5. Реакция замещения меди железом в растворе медного купороса.
- 6. Реакции, идущие с образованием осадка, газа и воды.
- 7. Получение водорода взаимодействием кислоты с цинком.

#### Тема 4

#### Вещества и их свойства (8 ч)

Металлы. Взаимодействие металлов с неметаллами (хлором, серой и кислородом). Взаимодействие щелочных и щелочноземельных металлов с водой. Электрохимический ряд напряжений металлов. Взаимодействие металлов с растворами кислот и солей. Алюминотермия. Взаимодействие натрия с этанолом и фенолом.

Коррозия металлов. Понятие о химической и электрохимической коррозии металлов. Способы защиты металлов от коррозии.

*Неметаллы*. Сравнительная характеристика галогенов как наиболее типичных представителей неметаллов. Окислительные свойства неметаллов (взаимодействие с металлами и водородом).

Восстановительные свойства неметаллов (взаимодействие с более электроотрицательными неметаллами и сложными веществами-окислителями).

Кислоты неорганические и органические. Классификация кислот. Химические свойства кислот: взаимодействие с металлами, оксидами металлов, гидроксидами металлов, солями, спиртами (реакция этерификации). Особые свойства азотной и концентрированной серной кислоты.

Основания неорганические и органические. Основания, их классификация. Химические свойства оснований: взаимодействие с кислотами, кислотными оксидами и солями. Разложение нерастворимых оснований.

Соли. Классификация солей: средние, кислые и основные. Химические свойства солей: взаимодействие с кислотами, щелочами, металлами и солями. Представители солей и их значение. Хлорид натрия, карбонат кальция, фосфат кальция (средние соли); гидрокарбонаты натрия и аммония (кислые соли); гидроксокарбонат меди (II) — малахит (основная соль).

Качественные реакции на хлорид-, сульфат-, и карбонат-анионы, катион аммония, катионы железа (II) и (III).

Генетическая связь между классами неорганических и органических соединений. Понятие о генетической связи и генетических рядах. Генетический ряд металла. Генетический ряд неметалла. Особенности генетического ряда в органической химии.

Демонстрации. Коллекция образцов металлов. Горение магния и алюминия в кислороде. Взаимодействие щелочноземельных металлов с водой. Взаимодействие меди с концентрированной азотной кислотой. Результаты коррозии металлов в зависимости от условий ее протекания. Коллекция образцов неметаллов Разбавление концентрированной серной кислоты. Взаимодействие концентрированной серной кислоты с сахаром, целлюлозой и медью. Образцы природных минералов, содержащих хлорид натрия, карбонат кальция, фосфат кальция и гидроксокарбонат меди (II). Образцы пищевых продуктов, содержащих гидрокарбонаты натрия и аммония, их способность к разложению при нагревании. Гашение соды уксусом. Качественные реакции на катионы и анионы.

# Лабораторные опыты.

- 8. Испытание растворов кислот, оснований и солей индикаторами.
- 9. Взаимодействие соляной кислоты и раствора уксусной кислоты с металлами.
- 10. Взаимодействие соляной кислоты и раствора уксусной кислоты с основаниями.
- 11. Взаимодействие соляной кислоты и раствора уксусной кислоты с солями.
- 12. Получение и свойства нерастворимых оснований.

**Практическая работа 1**. Инструктаж по ТБ. Решение экспериментальных адач по теме «Металлы и неметаллы»

**Практическая работа 2.** Инструктаж по ТБ. Решение экспериментальных задач на идентификацию органических и неорганических соединений.

# Учебно-тематический план

#### 11 класс

| No        | Тема                   | Количество часов |          | В том числе |             |
|-----------|------------------------|------------------|----------|-------------|-------------|
| $\Pi/\Pi$ |                        | По               | По       | Практически | Контрольных |
|           |                        | программе        | рабочей  | х работ     | работ       |
|           |                        | O.C.             | программ |             |             |
|           |                        | Габриеляна       | e        |             |             |
| 1         | Строение атома и       | 3/6              | 3        |             |             |
|           | периодический закон    |                  |          |             |             |
|           | Д.И. Менделеева        |                  |          |             |             |
| 2         | Строение вещества      | 14/28            | 14       |             |             |
| 3         | Химические реакции     | 8/16             | 8        |             | 1           |
| 4         | Вещества и их свойства | 9/18             | 8        | 2           | 1           |
|           | Итого                  | 34/68            | 33       | 2           | 2           |

## Литература, рекомендованная для учащихся:

Химия.10-11 класс. Базовый уровень: учебник для общеобразовательных учреждений /О.С.Габриелян. -М.: Дрофа, 2013

Химия. 10-11 класс. Профильный уровень: учебник для общеобразовательных учреждений / О.С. Габриелян, Ф.Н. Маскаев и др.— М.: Дрофа, 2009.

Органическая химия в тестах, задачах, упражнениях. 10 кл. – Габриелян О.С., Остроумов И.Г., М.: Дрофа 2003-2005.

Тесты по химии: 10-й кл.: к учебнику О.С.Габриеляна и др. «Химия. 10 класс» / М.А.Рябов, Р.В.Линько, Е.Ю.Невская. – М.: «Экзамен», 2006. - 158 с.

Задачник по химии для учащихся 10 класса общеобразовательных учреждений: Профильный уровень, Кузнецова Н.Е., Лёвкин А.Н.- М.: Вентана-Граф, 2007

Материалы для подготовки к ЕГЭ: ЕГЭ 2011. Химия. Тематические тренировочные задания / И.А.Соколова. –М.: Эксмо, 2011.

## Литература для учителя

Химия.10-11 класс. Базовый уровень: учебник для общеобразовательных учреждений /О.С.Габриелян. -М.: Дрофа, 2013

Химия. 10-11 класс. Профильный уровень: учебник для общеобразовательных учреждений / О.С. Габриелян, Ф.Н. Маскаев и др.— М.: Дрофа, 2014